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ABSTRACT 

The objective of this research is to develop a constitutive theory for granular 

material from a micromechanics point of view so that the effects of micro-structure are 

considered. This type of micro-structural based constitutive theory is useful in many 

fields of studies such as soil mechanics, powder mechanics, composite mechanics 

and ceramic mechanics. The specific efforts are focused in the following four 

different areas: 1) descriptions of micro-structure, 2) micro-macro relationship, 3) 

classes of micromechanics constitutive theory, and 4) contact law of the inter-particle 

binder. These four areas are the fundamental elements to the construction of a 

micromechanics theory for granular media. 

Previous studies have shown that at large deformation, the strain exhibits non- 

uniformity within the material sample which contradicts to the uniform strain 

assumption used in the past theories. The non-uniformity of strain has been a major 

obstacle for constitutive modelling. Therefore, particular attention will be given to the 

description of heterogeneity in microstructure and the methodology of integrating the 

microstructure description in relating the micro-macro mechanical behavior.  The 

micromechanjcs theory will lead to a model that can capture the features due to 

effects of microstructure and discrete nature of granular particles. 

A related aspect in the development of such a micromechanics model is to 

find a link between discrete system and continuum system. The results of this 

research will provide basic understanding in different classes of continua suitable for 

granular materials and in the limitations of the classic continuum in the usual 

continuum theory. The developed theory will be evaluated by special features that 

exist only in granular material, such as the dispersion and decay of stress wave 

propagating in granular media. The nature of this investigation is focused on 

theoretical development. The developed theory is evaluated by experimental and 

computer simulation results. 
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CHAPTER1 
SUMMARY OF THE PROJECT 

1.1 RESEARCH OBJECTIVES 

The general objective of this research is to develop a constitutive model for a packing 

of granules.  The effort is focused in four different areas: 1) statistical descriptions of micro- 

structure, 2) micro-macro relationship, 3) classes of micromechanics constitutive theory, and 

4) contact law of the inter-particle binder. These four areas are essential to the construction of 

a micromechanics theory for particulate media. 

1.2 ACCOMPLISHMENTS 

Accomplishments of the present project is reviewed in four different areas: 1) 

descriptions of micro-structure, 2) micro-macro relationship, 3) classes of micromechanics 

constitutive theory, and 4) contact law of the inter-particle binder. 

1.2.1.   Descriptions of Micro-structure 

A proper description of microstructure of granular material is imperative to the 

modelling of its micro-scale behavior. Three approaches of microstructure description have 

been used. They are: 

1) particle pair (branch) model, 

2) particle group (cell or micro-element) model, and 

3) models with two-point probability function. 

In the particle pair model, the configuration of each particle pair is represented by a 

branch. The microstructure of granular material is represented by a distribution function of the 

lengths and orientations of all branches. The orientational distribution is usually expressed in 

terms of a fabric tensor which represents the anisotropic properties of a granular media. 

Along this line, we studied the mechanical properties in relation to the material symmetry 

represented by the fabric tensor (Ref 13, 9, 12, 14, and 15 in section 1.3.3). 

A more detailed description for microstructure is to divide the material into cells (e.g. 

Voronoi tessellations or Delaunay tessellations).  Each cell represents a group of particles. 

Configuration of each particle group is described by a local fabric tensor. The microstructure 

of granular material is represented by a distribution function of the local fabric tensors. We 

utilize this more complex description to account for the variation of microstructure-for different 



cells (i.e., the heterogeneity of material).  It was found that the effects of heterogeneity are 

significant on plastic deformation (Ref. 3, 4, 5, 7 in section 1.3.3). 

To further describe the nature of heterogeneity, we use the two-point probability 

function. A new formulation is derived that determines the two-point probability function 

directly from the statistical measures of stereological chord length and porosity. Two-point 

probability function is a useful and practical descriptor for the microstructure of a general 

random multi-phase material.  Methods are developed (24, 30) for predicting mechanical 

property based on the two-point probability function. Compared to the conventional effective 

medium theory, the two-point probability method provides a viable approach to account for the 

interactions among phases of material. Work continues in the area of characterizing 

heterogeneity by combining the concepts of (2) and (3). The objective is to search for a 

simple approach that captures the essential information of microstructure. 

1.2.2.    Micro-macro Relationship 

Four methods have been used to relate micro-macro quantities. 

1) kinematic hypothesis : the particle displacements are determined from macro-scale 

strain. 

2) static hypothesis : the contact forces are determined from macro-scale stress. 

3) self-consistent: the particle displacements are determined from the micro-element 

strain; the micro-element strain is determined from macro-scale strain based on 

Eshelby method. 

4) statistical method : the particle displacements are determined from the micro-element 

strain; the micro-element strain is determined from macro-scale strain based on a 

statistical distribution function. 

In the kinematic hypothesis, the uniform strain assumption is implied.  Therefore, the 

derived constitutive constants are applicable only to small strain conditions where the strain is 

relatively uniform in a sample. At the level of large deformation, the strain becomes highly 

non-uniform due to particle sliding and particle rotation. When the strain field is 

heterogeneous, it is found that the overall behavior is no longer a straight volume average of 

the local behavior (Ref. 3, 4, 5, 7 in section 1.3.3). 

Very few attention has been given to the heterogeneous deformation in modelling the 

overall behavior of the granular material.  To account for the heterogeneity, the other three 

methods listed above for micro-macro relationship have been developed.  In the formulation of 

static hypothesis, the derived stress-strain relationship is corresponding to a lower bound 

solution, in contrast to the upper bound solution from the kinematic hypothesis.  Therefore, the 

development of a static hypothesis is useful in providing a set of bounds for estimating the 

exact solution.  The bounds are  particularly useful when the microstructure information is • 



limited so that an exact solution cannot be determined. 

To further consider the heterogeneity, material is divided into cells (i.e. micro- 

elements). Configurations of cells are used to characterize the microstructure.  Self-consistent 

method was applied to relate the micro-element strain and the macro-scale strain.  Stress- 

strain relationship was derived based on the self consistent method, for a two dimensional 

granular packing considering plastic sliding (Ref. 3, 8 in section 1.3.3).  The method can not 

be readily extended to a three-dimensional problem because it requires a Green's function for 

general anisotropic media which is not available for three-dimensional condition in the current 

literature.  In this project, an effort was also devoted to the development of general Green's 

function (Ref. 11 in section 1.3.3).  The developed three-dimensional Green's function is a 

useful fundamental solution that can be used not only in the self-consistent method but also in 

other fields of mechanics. 

Statistical method was also used to relate the micro-element strain and the macro- 

scale strain. The canonical ensemble average technique used in statistical mechanics was 

adopt. The problem was addressed and the theory was derived considering particle sliding 

(Ref. 4, 5, 7 in section 1.3.3).  Since this problem falls in the category of homogenization 

theory, an effective medium theory in this connection was also examined (Ref. 21, 30 in 

section 1.3.3). 

The results show that heterogeneous strain field is a very important factor.  Micro- 

macro relationship without consideration of heterogeneous strain field (e.g. in the kinematic 

hypothesis model) fails to model yielding of a packing. The three aforementioned methods are 

capable of modelling heterogeneous strain field and yielding of a packing. However, the static 

hypothesis underestimates while the other two methods overestimate failure strength. 

Additional work still needs to be focused in this area. Other factors associated with this 

problem also need to be considered such as the method of residual force redistribution due to 

particle sliding. 

1.2.3.    Glasses of Micromechanics Constitutive Theory 

A desirable approach is to view the system of discrete particles as a continuum. 

Regarding to this approach, the fundamental question is: what should be the form of the 

equivalent continuum? Considering the distinctive two modes of particle movements, 

displacement and rotation, the equivalent continuum model for the discrete system can be 

represented by different types of continua, for example, micro-polar continuum, high gradient 

continuum, non-local continuum, etc.  Differed from the classic continua in solid mechanics, 

these continua display effects of internal characteristic length.  When the particle size is 

relatively large compared to the sample size, the notion of classic continua is no longer 

adequate to represent the granular system. 



It is clear that a micro-polar continuum captures the mode of particle rotation, thus 

models the consequence of asymmetric stress in granular material.  It was found that the 

stress distribution and deformation in granular medium depend significantly on the rotation 

stiffness between particles (Ref. 2, 12 in section 1.3.3). 

The high gradient continuum depicts the effect of high strain gradients. The model 

considers the strain difference of neighboring particles, thus can be regarded as a non-local 

model in a differential form. This type of continuum is useful in representing phenomena 

associated with internal characteristic length of the granular material (Ref. 14 in section 1.3.3). 

For example, the 

high gradient medium predicts the phenomenon of decay and dispersion of short length 

waves (Ref. 15 in section 1.3.3). 

So far, studies of the generalized continuum models show interesting singular behavior 

in elastic range.  Plastic behavior for these continua has not yet been studied.  However, it is 

expected that these generalized continua are useful in modelling localized deformation in 

plastic region due to microstructure effect.  Therefore the generalized continua are potentially 

useful models for the plastic and after failure behavior which can not be modelled by the 

classic continuum. 

1.2.4     Contact Law of Particles with a Binder 
i 

Most studies available in the literature are for granular materials with frictional contacts. 

Non-linear inter-particle contact behavior of Hertz-Mindlin type for frictional contact was used 

in the analysis for random packing of multi-sized granules.  For particles with cemented 

contact such as cemented sand have been previously modeled using a adhesive-frictional 

contact model (Ref. 27 in section 1.3.3). However, a more realistic model for cemented 

contact is to view the particles connected with binders of finite thickness and finite contact 

area.  Along this line, a theoretical model was developed for particles with elastic bonds and 

visco-elastic bonds. 
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CHAFEER2 

MICROSTRUCTURE CHARACTERIZATION 

Microstructure of granular material has significant effects on the macro-scale 

constitutive behavior.  Method of microstructure characterization for granular material thus 

plays an important role for prediction of stress-strain relationship.  Mathematical representation 

depends greatly on how a basic element of granular microstructure is selected.  Treating the 

particle group as basic element, the packing structure of material can be represented by a set 

of particle group configurations.  In this case, the basic element consists of more than two 

particles, thus provides more information of microstructure.  Particle group represented by a 

Voronoi cell has been previously used in characterizing microstructure and in developing 

micromechanical models of granular materials (Chang et. al. 1992, Chang 1992, 1993). 

In this chapter, Delaunay tessellation is discussed for microstructure characterization 

of granular material.  The distinctive geometric feature for Delaunay cells is the tetrahedral 

shape, all cells composed of four faces. As oppose to the polyhedral Voronoi cells, 

composed of different numbers of faces, the Delaunay cells potentially are simpler to be 

modelled and easier to be represented statistically.  Furthermore, the movement of four 

particles can be exactly represented by linear displacement and rotation fields.  This fact 

makes the linear fields good representations for each tetrahedral Delaunay cell which is 

associated with only four particles.  On the other hand, each Voronoi cell is usually associated 

with more than four particles.  Thus artificial constraints are involved when linear fields are 

used for representing the movement of particles. 

We seek for deriving a stress-strain relationship of a representative volume of granular 

material directly from the behavior of two-particle interaction.  In order to account the 

microstructure represented by a group of particles, we view the packing structure of granular 

materials at three different levels, namely, 1) inter-particle contact, 2) micro-element, and 3) 

representative volume.  Each pair of particles is regarded as the basic unit of granular 

material. A micro-element, which is associated with several particles, is an elementary unit at 

micro-scale level. At micro-element level, the discrete particle system is transformed into an 

equivalent continuum system and its behavior is described by the continuum concepts of 

stress and strain. A representative volume is defined as an assembly which contains a large 

number of particles to be representative of the granular material.  A two dimensional 

schematic representation of the three levels of granular material is shown in Fig. 2.1. 

In this chapter, we derive the stress-strain relationship for granular material based on 

micrornechanics approach using Delaunay tessellation method.  The derived stress-strain 

relationship is illustrated by comparing the predicted micro and macro behavior with computer 

simulation results.  The predicted results are also compared for both Voronoi tessellation and 

Delaunay tessellation methods. 
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2.1 DISCRETE BEHAVIOR AT CONTACT LEVEL 

2.1.1 Kinematics of Two Particles 

Particles in this model are assumed to be stiff such that the contact deformation are 

small compared to the size of particles.  For practical purpose, the movement of particles can 

be described by the kinematics of rigid particles.  There are two modes of movement for a 

particle: translation, A«,-", and rotation, Aw".  The superscript 'ri refers to the n-th particle. 

Based on the kinematics of two rigid particles of convex shape as shown in Fig. 2.2, the 

relative displacement A5^* and the relative rotation A0f of particle 'nri to particle 'ri at the 

contact point 'c' are given by 

ASr = Aur-Au'+e^rrA^-rfA«]) (2-D 

Aer = Ao>r-Ao^ <2-2) 

where rk   is the position vector measured from the center of the n-th particle to the contact 

point 'c' and the quantity ei;k is the permutation symbols used in tensor representation for 

cross product of vectors.  Combining tensor and matrix notation, Eqs. 2.1 and 2.2 can be 

written in a compact form as follows: 

{AZ)n = [**""] {Al//} - [R*] {Al//} (2-3) 

where {/)/"*} is the generalized inter-particle displacement vector and [Uj } is the 

generalized particle-displacement vector. fD/"*}, {U?}, and [RJF] are defined as follows: 

{Dtn = 
el 

>; {u;\ =« 
U; 

«; 

; Ki = »r V" 
o 8

SJ 

(2.4) 

where 6y is the Kronecker delta. 

2.1.2 Inter-particle Law 

Due to movement of particles, forces and moments transmit through at the inter- 

particle contacts. The inter-particle displacement, AÖ,-   , and the contact force, A/j    , at the 

inter-particle contact can be expressed in a general relationship of incremental foTm as 



nm   A »w» (2.5) 

The contact stiffness tensor k;-.    is given by 

• *nm       i nm   • e w 
A/j =   fy        A8y 

kf = krnT'tfm+*r<ßr8jm*trtr) (2-6) 

where n, s and f are the basic unit vectors of the local coordinate system construct at each 

contact.  The vector n is the outward normal to the contact plane. The other two orthogonal 

vectors s and t are on the contact plane. The sealer quantities kg    is the inter-particle 

normal stiffness and ks    is the inter-particle shear stiffness. 

The inter-particle rolling and torsional stiffness transmit the inter-particle moment 

(couple).  The inter-particle torsional stiffness is denoted by gtt
nm and the inter-particle rolling 

stiffness is denoted by g™.  The inter-particle relative rotation, A0,-   , and the inter-particle 

contact moment, A/tt,-    , can be expressed in a general relationship of incremental form as 

The inter-particle rotation stiffness tensor #,-.-    is given by 

(2.8) nm n»    ijm    n»       nm ,nm„nm     nm  nm*. 
8ij     = 8n   «i    «y    +8s    (Pi    Sj    Hi    tj   ^ 

Eqs. 2.5 and 2.7 can be combined into a compact form as follows: 

{A*n = [K™] {AD,""} (2-9> 

where {D,™} is the generalized inter-particle displacement vector, {Ff-   } is the generalized 

inter-particle force vector, and \KT^\ is the generalized inter-particle stiffness tensor, defining 

in the follows: 

[Df"} = 
■ nm 
'/ 

nm 
{Ft

m} = 
fi 

■nm 

m, 
nm [«n = 

*r ° 
[o «n 

(2.10) 

2.2 METHODS OF MICROSTRUCTURE CHARACTERIZATION 

To study a granular material with randomly packed particles, a suitable model for 

characterizing microstructure is essential. Two simple and widely used methods in the theory 

of stochastic geometry are examined, namely, the Voronoi tessellation method and the 

Delaunay tessellation method. 
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Both methods was originally used to characterize the microstructure of a set of 

randomly distributed points in space, such as the two dimensional example schematically 

shown in Fig. 2.3a.  The configuration of a set of discrete points has certain statistical similarity 

to that of a set of discrete particles, such as the two dimensional example schematically 

shown in Fig. 2.3b. Therefore, the methods for a set of points are expected to have ability for 

capturing, not in detail but, main features of the microstructure for a set of randomly 

distributed particles in space. 

Both methods transform the set of points into a cell structure.  Microstructure of the 

system is characterized through the arrangements and shapes of cells.  The Voronoi 

tessellation method divides the space into polyhedral cells.  Each Voronoi cell contains a 

particle point.  Each face of the polyhedron separates two neighboring particles.  Shape of the 

polyhedron represents the arrangement of a particle point and its neighbors.  The Voronoi 

tessellation for the set of points in Fig. 2.3a is given in Fig. 2.4a.  If each polyhedron cell is 

occupied by a particle, it is corresponding to Fig. 2.3b. 

The Delaunay tessellation is a unique representation dual to the Voronoi tessellation. 

The Delaunay method divides the space into tetrahedral cells.  Based on the vertexes of the 

Voronoi polyhedra, the Delaunay cell can be formed by connecting the four particle points 

nearest to the vertex.  Each tetrahedral cell has 4 faces and 6 edges.  The cell encloses a 

void.  Each edge connects a pair of particles. The Delaunay tessellation for the set of particle 

points in Fig. 2.3a is given in Fig. 2.4b. 

The method of Voronoi tessellation has been utilized by Chang et. al. (1992) and 

Chang (1992, 1993) to characterize microstructure of granular material.  The Delaunay 

tessellation is expected to have advantages over the Voronoi tessellation in that all Delaunay 

cells are tetrahedra, of which the statistical information are easier to be obtained.  In this 

chapter, we propose the Delaunay tessellation for characterizing microstructure. 

2.3 DELAUNAY TESSELLATION FOR MICRO-ELEMENT 

2.3.1 Strain Field in a Delaunay Micro-element 

A Delaunay cell is associated with four particles.  The tetrahedral micro-element is 

constructed by the centroids of the four particles.  Define displacement and rotation fields in 

the micro-element as linear functions: 

AufX) = Auf + Au'Xj (2-11) 

Aco^X) = Aul + AuijXj (2-12) 
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where X, is the position vector measured from the centroid of the micro-element, ut  and a>* 

are respectively the displacement and the rotation at the centroid of the micro-element, tin is 

the displacement gradient, to,-,- is the rotation gradient, and the superscripts 'e' refers to the e- 

th micro-element. 

Using continuum variables of the displacement and rotation fields, the inter-particle 

displacement and the inter-particle rotation in Eqs. 2.1 and 2.2 can be expressed as: 

A8r = Ae'iir+e^Xrrr-XW) (2-13) 

Aer = AY;-(T <2-14) 
where /.-     is the branch vector measured from the center of the n-th particle to the center of 

the m-th particle and rk    is the position vector connecting the center of n-th particle to the 

contact point 'c'.  The branch vector and position vectors are related by L    =X.- -X-.   or 

I,-    =T=  -T-.    .  The asymmetric deformation strain e.7 and the polar strain y« are defined, 

similar to that giVen by Chang and Liao (1990) and Chang and Ma (1990), as follows: 

Ae'f = A«,} + eiJk Au« (2-15) 

Ay*- = A«y (2.16) 

The symmetrical part of the strain Ae,y is equal to the symmetrical part of 

displacement gradient, representing the usual strain of the micro-element, i.e., 

A4, = i(A4+A$ = |(A^+A«^) (2.17) 

The skew symmetric part of the strain Ae^- represents the net spin of particles (i.e., the 

difference between rigid body rotation and the particle rotation at the centroid of the micro- 

element).  Thus 

A4l - ^(A4-A$ - ^AüjJ-Ai^-e^AQj (2-18) 

It is noted that, we aim to describe the movements of discrete particles with continuum 

variables {eL y*j] instead of discrete variables {«,-", w"}.  Substituting the linear fields of 
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Eqs. 2.15 and 2.16 into Eqs. 2.11 and 2.12, particle movements and micro-element strains are 

related by 

Auß") = AW; + AejX/-^^X/ (2-19) 

Auß*) = AUi+Ay}X? .     (2-20) 

where «,-, ca,- are respectively the displacement and rotation of particle n.  X:   is the position 

vector from centroid of the micro-element to the centroid of particle n.  Since the superscript n 

denotes the particles from 1 to 4 for a Delaunay cell, the set of 24 discrete variables 

{«,-» co,-} can be fully replaced by the set of 24 continuum variables {e,y, Y»y> #«» at) ■ 

Neglecting the rigid body translation and the rigid body rotation, we let 

A«; = 0 (2-21) 

AUij-Au-^ = 0 (2-22) 

Substituting Eq. 2.22 into Eq. 2.18, it becomes: 

A«? - -^4 (2.23) 

Using Eqs. 2.21 and 2.23, Eqs. 2.19 and 2.20 can now be written as follows: 

AufiL") - i(A4+A#X/ (2-24) 

A«tfn - -i'^^TW (2-25) 

In Eqs. 2.24 and 2.25, the total number of continuum variables is 18 as represented by 

the set {e% y«} • With those 6 known conditions of rigid body movement (Eqs. 2.21 and 

2.23), the 24 discrete variables of {u£X*), (dJ(X*)} can be uniquely defined from the set of 

18 continuum variables {e,y, Yy} 

It is noted that the linear field assumption used in Voronoi representation (Chang, 

1992) does not lead to a unique mapping between discrete variables and continuum 

variables.    As oppose to the Delaunay cell, a Voronoi cell usually consists of more than 4 

particles, such that the number of discrete variables {ui(X'r), caJ(Xn)} are more than 24. 

Therefore, the linear field assumption in Voronoi representation involves artificial kinematic 

constraints.  In this regards, linear field assumption is a better representation for Delaunay 

tessellation method. 
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2.3.2 Micro-element Strain versus Inter-particle Displacement 

We express the relative movement of a particle pair (Eqs. 2.13 and 2.14) in terms of 

the generalized strain tensor {£,£} as follows: 

{AD™} = [L-£] {A2$ (2-26) 

where {D{   }, as given in Eq. 2.10, is the generalized inter-particle displacement vector 

between particles 'm' and 'ri and [Z,,-^ ] is the fabric tensor operator.   [L^ ] and {E:k} are 

given by 

[Cl = 
*«T edvrr-x;rn 

0 s*r 
; tf£) =< (2.27) 

Each Delaunay cell of tetrahedral shape consists of 4 vertices and 6 branch vectors 

(edges).  Since there are 6 variables of {/),-   } associated with each branch vector, thus the 

total number of variables {Dt   } is 36 for a cell, which can be determined from 18 continuum 

variables of the set {e(y, y«;} •  It is noted that the 36 variables are not independent due to 

geometric constraint of compatibility.  On the face made of 3 vertices (say, m, n, and q), the 6 

variables of {Dfm} associated with the branch vector //"* can be expressed by the variables {.D/*5} 

and {Z)|-?w} associated with the other two branch vectors l^1 and l^m, given by 

Dr = D^+Dr (2-28) 

For each Delaunay cell, 18 compatibility equations can be written.  The other 12 equations 

are: 

(2.29) 

The inter-particle displacements obtained from the generalized strain tensor {E^} using Eq. 

2.26 automatically satisfy the 18 compatibility equations. 

2.3.3 Inter-particle force, versus micro-element stress 

The stress of a micro-element can be defined using the principle of energy 
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equivalence.  Due to an increment of strain, the potential energy from the stress and strain is 

equal to the work done at the inter-particle contacts.  Note that each particle pair is the edge 

shared by several micro-elements.  Let <XC be the number of micro-elements that share the 

same edge.  It is noted that, for simplicity, we use the superscript 'c' to instead of the 

superscripts 'nni.  Assuming the work done at this contact is equally shared by all micro- 

elements associated with this contact.  The energy equivalence is 

ojAcJ +|I}AYJ = -}~E—c(ffM
Cj+>nf*QCj) 

Ve c  a 
It can be written in a compact form as follows: 

Ve  c   a 

where {&.-} is the generalized stress tensor given by 

(2.30) 

(2.31) 

is!} 
a 

H 

(2.32) 

in which {a«} is the Cauchy stress tensor and {ji«} is the polar stress tensor for a micro- 

element.   It is noted that ccc is 2 for two dimensional case.   In a three dimensional case, ac is 

an additional measure of microstructure describing the neighbors of a micro-element. 

By substituting Eq. 2.26 into Eq. 2.31, 

(Aß,*} 
Ve  c  a 

= 0 (2.33) 

Since the incremental strain is arbitrary chosen, in order to satisfy the energy 

conservation, we have 

w»V--^E-iwa*fcS] 
c  cr 

or 

Ve c   ac 

(2.34) 

(2.35) 

More specifically, 
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F    c   a 

(2.36) 

(2.37) 

where if = l™ = X™-X?.  Also, /? = Jj-',w and ffl/7 = m™ are the inter-particle force 

and moment acting on the n-th particle respectively. 

2.3.4 Constitutive Law for Micro-element 

The stress-strain relationship for a micro-element is given by 

{AS;} = [Cy {A2Q 

The stiffness tensor [Cjtf] can be derived from the following three essential relationships: 

1) inter-particle force to micro-element stress relationship (Eq. 2.35) 

2) inter-particle law (Eq. 2.9) 

3) micro-element strain to inter-particle displacement relationship (Eq. 2.26) 

These relationships are schematically shown in Fig. 2.5.  Using these three equations, the 

(2.38) 

stiffness tensor' [C,Jy] is derived, given by 

via = -{-Il^/iKjiL^ 
Ve  c   or 

Eq. 2.38 can be expressed as follows: 

where 

H AjM   Bifil [A4' 
'   = <       ► 

A (4 DyH   Eykl AY« 

(2.39) 

(2.40) 

ßm ~ ~1^ —c
ehmli */Ä r*  ~Xkrm ) 

Ve   c   ac 

fftf = — L — ejmnk *«A rm -X, rm ) 

(2.41) 

Vec   ac 

A brief summary of the discrete variables, the continuum variables, and their 

relationships for a Delaunay micro-element is given in Table 2.1. 
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2.4 OVERALL BEHAVIOR FOR REPRESENTATIVE VOLUME 

In what follows, we derive the constitutive law for a representative volume of the 

granular material.  The macro-level stress-strain behavior is obtained from the averaged 

behavior of micro-elements.  The overall stress and strain, denoted by AS« and AEi;, are 

regard as volume averages of the local stresses and local strains at the micro-element level, 

such that: 

AViE™%- (2-42) 

A£?4E^; (2-43) 

where Ve is the volume associated with the e-th micro-element. Summation over the volume 

V of all micro-elements is equal to the representative volume V. 

To derive the correct overall constitutive relationship, it is essential to account for the 

fluctuations of local strain AE? and local stress AS« of micro-elements in a heterogeneous 

granular system.  The fluctuations are complicated in nature and difficult to model.  Strain 

fluctuations for/granular material without consideration of polar strain has been studied using 

Self-consistent method (Chang et.al. 1992) and using method of Distributive tensor (Chang 

1993).   It is noted that we will evaluate the method of Distributive tensor in detail for predicting 

the mechanical behavior of heterogeneous granular material in Chapter 3.  In trade off 

complicate analyses, it is desirable to conduct simple analyses for obtaining approximate 

solutions.  In some situations, the results of simple analyses involve straight forward and 

tractable assumptions which may be more useful in providing insights on the nature of 

fluctuation of local stress and strain. Although the results of simple analyses are approximate 

to the exact solutions, they provide bounds and estimates which are useful for assessing the 

range of mechanical behavior for the complex granular systems. To this end, we conduct 

analyses with the following four simple assumptions: (For clarity in the subsequent 

presentation, we drop the subscript for expressions of stress, strain and stiffness tensors.) 

(1) uniform strain (i.e., €, y are constants for all micro-elements) 

(2) uniform stress (i.e., a, p. are constants for all micro-elements) 

(3) uniform strain and uniform polar stress (i.e., e, \i are constants for all micro- 

elements) 

(4) uniform stress and uniform polar strain (i.e., a, y are constants for all micro- 

elements) *". 
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Clearly, the uniform strain assumption of case (1) leads to an upper bound solution, 

the uniform stress assumption of case (2) leads to a lower bound solution, the partial uniform 

strain or stress assumptions (i.e., cases (3) and (4)) lead to intermediate solutions.  The overall 

stiffness tensor can then be derived based on the four assumptions, as follows: 

Case (1) - uniform strain assumption (€, y are constants):  The effective macro-scale 

stiffness tensor is the volume average of stiffness tensor for all micro-elements, given by 

"   e 
(2.44) 

where the overline is defined as volume average of local quantities.  This definition of overline 

applies throughout this section. 

Case (2) - uniform stress assumption (a, \i are constants):  Inverse of the effective 

macro-scale stiffness tensor is the volume average of the inverse of stiffness tensor for all 

micro-elements, given by: 

c& = (cr1)-1 = [I £ r(CT')"1 (2-45) 

where the overline of C~l is defined as the volume average of the inversed local stiffness. 

Case (3) - uniform strain and uniform polar stress assumption (e, ji are constants): 

The effective stiffness tensor is given by: 

Qfff (2.46) 
ZM^fr1)-1     DA -'(P1)"1!^ +E-DA lB 

where the overline of A ~l is defined as the volume average of the inversed local stiffness A e 

The expressions of Ae, Be, De and Ee can be found in Eq. 2.41. 

Case (4) - uniform stress and uniform polar strain assumption (o, y are constants): 

The effective stiffness tensor is given by: 

Ctf A-BE^D+BE-^E-1)   EXD     BE^E'1) 
-l 

(2.47) 

2.5 MODEL PERFORMANCE 

To evaluate the applicability of the derived micromechanical model with Delaunay 

tessellation characterization, we study elastic stress-strain behavior of a random packing of 

planar disks.  The predicted results are compared with the computer simulation results. 

A periodic space of randomly packed particles used in this study is shown in Fig. 2'.6. 
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The periodic packing can be repetitively stacked to fill the entire space, thus is a 

representative volume of the granular material.  The packing is composed of 1200 particles of 

radius 0.175 mm and 800 particles of radius 0.100 mm.  The total number of contacts in the 

packing is 5330.  The coordination number (the average number of contacts per particle) is 

5.33, the area of the representative volume is 174 mm2 and the void ratio is 0.234. 

Mechanical behavior of the packing is obtained from a computer simulation method 

using the discrete element method by Chang and Misra (1989a). The packing is divided into 

2000 Voronoi cells shown in Fig. 2.7 and divided into 4070 Delaunay cells shown in Fig. 2.8. 

The predicted results obtained from the present model using Delaunay tessellation method are 

first compared with the computer simulation results and then compared with the results 

obtained from Voronoi tessellation method. 

2.5.1 Comparison with Computer Simulation 

To illustrate the heterogeneous nature of strain and stress in the granular system, the 

variation of these quantities are investigated at the local level.  The loading condition is taken 

to be pure shear.  The overall stress and strain for the representative volume are specified to 

be: e„ = 0.22%, z22 = -0.22%, a(12) - 0, a[12] = 0, u,3 = 0, and \\23 = 0.  The overall stress and 

strain for the representative volume to be computed are: or,,, u22, z(12), zm, J13, and y23.  Also 

computed in the model are the local stress and local strain for each micro-element.  The inter- 

particle stiffness are assumed to be same for all inter-particle contacts, kn = 50 kN/m, ks = 40 

kN/m, and gs = 0.  The material of concerned is composed of round particles with no rotational 

resistance. 

We list the overall stresses and strains for the representative volume in Table 2.2 and 

the standard deviation of local stresses and local strains for micro-elements in Table 2.3, 

predicted under the four different assumptions of heterogeneous states.  The results from 

computer simulation are also listed for comparison. According to Tables 2.2 and 2.3, the 

results based on the assumptions of uniform polar strain (cases 1 and 3) are in good 

agreement with those from the computer simulation.  However, the results based on the 

assumptions of uniform polar stress (cases 2 and 4) deviate greatly with those from the 

computer simulation.  Therefore, the assumption of uniform polar strain seems to be better for 

granular material. 

The predicted effective moduli are compared with those obtained from computer 

simulation to evaluate the micromechanical method.  Figures 2.9 and 2.10 show the shear and 

bulk moduli with different ratio of inter-particle stiffness kjkn, under four different assumptions 

of the heterogeneous state of the granular packing.   In this prediction, for all inter-particle 

contacts, the normal inter-particle stiffness kn = 50 kN/m, while tangential inter-particle stiffness 

ks is chosen as 0, 10, 20, 30, 40, and 50 kN/m.   In both Figures, case 1 is the upper bound' 
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solution and case 4 is the lower bound solution.  Case 2 with uniform polar stress does not 

give good agreement, in which, the value of ks has little effect on moduli.  The results based 

on the assumptions of uniform polar strain (cases 1 and 3) provide a good range for upper 

and lower estimates respectively. 

2.5.2 Comparison with Voronoi Tessellation Method 

The predicted effective moduli based on Delaunay tessellation method are compared 

with those based on Voronoi tessellation method.  Figures 2.11 and 2.12 show the shear and 

bulk moduli with different ratio of inter-particle stiffness kjkn.  In both figures, the predicted 

moduli based on Delaunay tessellation method are identical with those predicted based on 

Voronoi tessellation method for case 1 while the predicted moduli based on Delaunay 

tessellation method are lower than those predicted based on Voronoi tessellation method for 

case 3.  This is due to the artificial constraint involved in the kinematic assumption in Voronoi 

tessellation method as described previously. The predicted moduli from case 1 and case 3 

for Delaunay tessellation method present a range to cover the computer simulation results. 

2.6 Summary 

In the micromechanics approach, structure of the granular material can be 

represented by a set of micro-elements characterized by Delaunay or Voronoi tessellation.  We 

transform the discrete variables of particle translation and particle rotation into continuum 

variables of strain and polar strain of micro-elements.  Correspondingly, we transform the 

discrete variables of inter-particle force and moment into continuum variables of stress and 

polar stress. 

In a tetrahedral Delaunay cell, the assumption of linear displacement and rotation 

fields leads to a unique mapping between discrete variables and continuum variables. This 

uniqueness is not guaranteed for a polyhedral Voronoi cell comprised of more than four faces. 

Thus linear field assumption used in Voronoi tessellation induces artificial constraints. 

The macro-scale constitutive relationship for a representative volume can be derived 

using four simple assumptions on the fluctuation of micro-element stress and micro-element 

strain.  Based on the example packing, the assumption of uniform polar strain of the present 

model gives results comparable with those obtained from computer simulation method. 

However, uniform polar stress seems not to be a good assumption.  With the assumptions of 

uniform strain and uniform polar strain, the present model provides an upper bound solution. 

With the assumptions of uniform stress and uniform polar strain, the present model provides a 

lower estimate solution. 
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Discrete variables: 

Generalized particle displacement 
Translation {«,"} 

Rotation {co"} 

Generalized inter-particle displacement 

{D-} 

Inter-particle displacement {0^} 

Inter-particle rotation {ö[} 

Generalized inter-particle force {F,c} Inter-particle force {f]c} 

Inter-particle moment {m,c} 

Inter-particle constitutive equation {F{
c}  = [K~\ {D?} 

Continuum variables: 

Generalized strain {Ey} Stretch strain {e*-} 

Polar strain {y^} 

Generalized stress {S^} Cauchy stress {a*} 

Polar stress {p^} 

Constitutive equation {S{j-} = [Cjy] {2%} 

Note: 

W 
>, o 
o 8iJ, 

V    c   a 

[^ = 
0           ö^

C 

Table 2.1       Summary of the discrete variables, the continuum variables, and their 
relationships for a Delaunay micro-element 
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Computer 
simulation 

e, Y as 
constants 

e, |i as 
constants' 

o, Y as 
constants 

a, [i as 
constants 

on (kPa) 13.743 15.751 8.684 13.236 0.001 

a22 (kPa) -13.537 -15.560 -8.488 -13.163 -0.000 

°(i2) (kpa) 0 0 0 0 0 

°[i2] (kPa) 0 0 0 0 0 

H13 (kPa-m) 0 0 0 0 0 

\i23 (kPa-m) 0 0 0 0 0 

€U   (%) 
0.22 0.22 0.22 0.22 0.22 

€22   (%)        ■ -0.22 -0.22 -0.22 -0.22 -0.22 

€(12)   (%) 
0.003 0.001 -0.002 -0.002 0.131 

e[12]   (%) 0.024 -0.001 0.001 0.001 0.045 

Y13 (rad/m) 0.023 0.091 -0.380 -0.124 6.242 

Y23 (rad/m) 0.030 -0.033 0.004 -0.289 10.051 

Table 2.2  Predicted overall stresses and strains for the representative volume 
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Computer 
simulation 

e, Y as 
constants 

e, [x as 
constants 

o, Y as 
constants 

o, \i as 
constants 

Gu (kPa) •  3.151 5.835 0.000 0 0 

o22 (kPa) 3.091 5.527 0.000 0 0 

°(12) (kPa) 
1.456 0.404 0.000 0 0 

o[l2] (kPa) 3.641 3.151 0.000 0 0 

\il3 (kPa-m) 0.098 0.104 0 0.106 0 

\i23 (kPa-m) 0.099 0.105 0 0.105 0 

€lt (%) 0.039 0 0 0.088 1.834 

€22(%) 0.038 0 0 0.091 2.257 

6(12)   (%) 
0.024 0 0 0.014 1.119 

€[12]  W 
0.048 0 0 0.052 0.345 

Yi3 (rad/m) 0.603 0 0.037 0 142.0 

Y23 (rad/m) 0.721 0 0.054 0 232.0 

Table 2.3       Predicted standard deviations of local stresses and local strains for 
Delaunay micro-elements 
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MICRO-ELEMENT 

INTER-PARTICLE CONTACT 

REPRESENTATIVE VOLUME 

Figure 2.1   Schematic figure for three levels of granular materials 
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Particle m 

Particle n 

Figure 2.2  Kinematics of two interacting particles 
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Figure 2.3  (a) random distribution of discrete points; (b) packing of granular particles 

26 



(a) 

(b) 

w\r 

r^Jjy 

Figure 2.4      Microstructure characterization: (a) Voronoi tessellation; (b) Delaunay 
tessellation 
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Figure 2.5      Relationships between kinematic and static variables for a Delaunay 
micro-element 



Figure 2.6  Packing structure of the disk assembly used in example 
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Figure 2.7  Voronoi tessellation of the disk assembly 
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Figure 2.8   Delaunay tessellation of the disk assembly 
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Figure 2.9      Predicted effective shear moduli using the Delaunay tessellation method 
under four different assumptions 
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CHAPTER 3 
CLASSES OF EQUIVALENT CONITNUA FOR 

GRANULAR MATERIALS 

It is desirable to describe the deformation behavior of granular materials using 

continuum variables such as strain and stress. However the micro scale deformation, 

attributed to the relative movements of discrete particles, is not a continuous field. Therefore, 

for the purpose of analysis, it is a fundamental step to transform the discrete particle system 

to an equivalent continuum system.  Choice of the transformation methods results to different 

types of equivalent of continuum. This chapter describes different classes of continuum 

which are suitable for representing granular media. More complex continua capture more 

features of the deformation behavior for granular material. The continua of micropolar type 

reflect the mechanism of moment transmitting in granular media while the high-gradient 

continua capture the effect of particle size on wave dispersion. 

3.1 INTRODUCTION 

Granular material, such as soil, powder, ceramic material, etc., can be perceived as a 

collection of particles. The overall mechanical properties for granular materials depend 

significantly on the micro-scale geometric arrangement and on the contact stiffness between 

two interacting particles. Therefore the effects of particle interaction should be considered in 

the construction of a mathematical model. However, a granular system is so intricate in its 

details so as to become essentially intractable. Predictions of each particle movement are 

costly to extract and usually contain information well in excess of one's needs. It is therefore 

desirable to transform a discrete particle systems into an equivalent continuum system. The 

deformation behavior of the granular material is described using suitable continuum variables 

instead of the movement of individual particles. Granted, the continuum variables can be 

used to retrieve and keep track the movement of each discrete particles, at least in an 

approximate manner. This approach allows the construction of a macro-scale constitutive 

relations for the equivalent continuum of granular materials. The constitutive relations of 

continuum type is capable of reflecting the discrete nature of particle interaction at micro- 

scale level. 

A number of studies have been attempted along this line of approach. For example, 

stress-strain relationship was modelled for regularly packed elastic spheres by Deresiewicz 

(1958), Duffy (1959), Duffy and Mindlin (1957),  and more recently, for randomly^packed 
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granules, by Koenders (1987, 1994), Cambou (1993), Bathurst and Rothenberg (1988), 

Chang (1988), Jenkins (1988, 1993), Walton (1987),  etc. These stress-strain models treat the 

granular material as the traditional continuum in solid mechanics.  The stress-strain 

relationship defined for an infenitesimal element in solid mechanics is now defined for a 

representative unit cell of the granular media. Since the representative unit cell must contain 

a large number of particles to be representative of the material, the cell is of finite volume and 

the stress and strain actually fluctuate within the representative unit cell. Thus the so called 

stress-strain relationship are referred to the average stress and average strain of the unit cell. 

To describe in more detail on the deformation of a representative unit, it is necessary to 

include suitable continuum descriptors other than stress and strain. For example, with the 

consideration of particle rotation gradients, the equivalent continuum resembles the continua 

of micro-polar or Cosserat type (Chang and Liao 1990, Chang and Ma 1991, 1992). 

Corresponding to the rotation gradients, moments are capable to transmit through the 

granular medium, which represents a mechanism that can not be modelled by the traditional 

simple continuum. The effect of moment transmitting becomes important for particle 

assemblies with cemented inter-particle contacts or with angular particles where the 

magnitudes of moment transmitted through contacts are significant (Chang and Ma 1992). 

With the consideration of higher orders of displacement gradients, the equivalent 

continuum resembles the continua of high-gradient or non-local type. The use of higher 

orders of displacement gradients reflects the effect of particle size on the propagating 

velocities of waves through granular media (Chang and Gao 1995b), which is significant for 

granular medium with large particle sizes (or short wave lengths). This dispersion 

phenomenon of wave can not be portrayed by the traditional simple continuum. Elucidated 

from the recent studies in high gradient models for metals (Coleman and Hodgdon 1985, 

Triantafyllidis and Aifantis 1986, Bazant and Pijandier-Cabot 1987, Bardenhagen and 

Triantafyllidis 1994), the model may also be useful in the study of localized deformation 

associated with shear band for granular media. 

In this chapter, we first represent the displacement and rotation fields by continuous 

polynomial functions.  Based on the two continuous fields, we describe different classes of 

equivalent continua. To illustrate the relationship between micro-macro properties such as 

internal length of granular material and inter-particle stiffness, we discuss the constitutive 

constants of a high-gradient model for isotropic granular materials. Example is also given to 

show the links between the high-gradient model and nonlocal model. 

3.2 KINEMATIC DESCRIPTION OF GRANULAR MATERIAL 

A simple conceptual model for granular material is to treat it as a collection of particles. 

When a representative volume element of particles is subjected to an increment of load, 
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particles undergo translations    uf   and rotations   at"  , resulting in the relative deformation 

between particles.   Based on the kinematics of two particles, the inter-particle displacement 

and rotation due to relative movement of two particles generate inter-particle forces and inter- 

particle moments in granular materials. The magnitudes of forces and moments depend on 

the contact stiffnesses. 

For two identical elastic spherical particles in contact, the contact area is of circular 

shape, values of contact stiffness can be obtained from Hertz-Mindlin contact theory as a 

function of particle properties and contact force. While the translational contact stiffness are 

responsible for transmitting forces through inter-particle contacts, the rotational contact 

stiffness are responsible for transmitting moments through inter-particle contacts in a granular 

media. 

To develop a continuum mechanics model for the behavior of particle assembly, it is 

desirable to view the discrete system as an equivalent continuum system. To this end, we 

define the displacement and rotation of discrete particles as macro-scale continuum fields, 

denoted as: displacement    u± (x)     and rotation    0ii {x)    .  When x is located at the 

centroid of n-th particle, the functions represent the displacement and rotation of the n-th 

particle, 

ui(xi) =WJ 
(3.1) 

Following the approach by Chang and Liao (1990) using polynomial expansion for the 

displacement and rotation fields, the displacement and rotation of the m-th particle can be 

estimated from the deformation gradients at the neighbouring n-th particle, given by 

m      n       «.in    1    «. A«, am 

(3.2) 

*^m — ,>"i_,^H r Km j. ' »i*  r iu* T urn 

where the branch vector   IJ
w,=rJ"

c-ri"
c ; the displacement and rotation derivatives of the n- 

th particle are treated to be the continuum kinematic variables. 

It is noted that the rotation and displacement are not two independent variables. 

During deformation of a granular material, the rotation of a particle consists of two 



components: the rigid body rotation and the particle spin. While the particle spin is 

independent of the displacement field, the rigid body rotation is solely induced by the 

displacement field from the skew-symmetric part of displacement gradients. 

3.3 DIFFERENT GLASSES OF CONTINUA 

The discrete system can be characterized as an equivalent continuum system based 

on the two continuous fields of displacement and rotation. The discrete variables and the 

continuum variables are linked through the series expression of Eq. 3.2. When the number of 

terms in this series is large enough, the continuum system can capture as much details as 

the discrete system. A simplified kinematic description leads to a simpler continuum model 

for the discrete system while still capturing the essential features of granular materials. 

Different degrees of approximation of Eq. 3.2 lead to different classes of 'continua'.  We 

classify the models into categories: (1) high gradient continua - including higher orders of 

deformation gradients, and (2) first gradient continua - including only the first order of 

deformation gradients. 

Higki 

Class 1 : High Gradient h 

Particle spin and moment transmitting through the continua are considered. The 

continuum variables involves higher orders of both displacement and rotation gradients. 

Class ? : High Gradient Couple stress / Cosserat Continua 

The particle spin is neglected, thus the particle rotation is induced solely from the rigid 

body rotation of displacement field. The gradients of rigid body rotation can still cause the 

transmitting of contact moments through granular material. This mechanism resembles that 

proposed in couple stress theory and Cosserat theory (Cosserat 1909, Truesdell and Toupin 

1960, Toupin 1962, Mindlin and Tiersten 1962). The moment transmitting are found to have 

interesting effects on the propagation and dispersion of waves in granular media (Chang and 

Gao 1995b). 

Same as class 2, we further neglect the moment transmitting caused by the gradients 

of rigid body rotation. The continuum variables still involves higher orders of displacement 

gradients. Chang and Gao (1995a) have derived this class of constitutive models for granular 

materials.' 
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Using up to the first-order gradients of displacement and rotation. The continua 

resemble the micro-polar type proposed by Eringen (1968).  Constitutive law of this type for 

granular material shows that moment trasmitting can effect significantly the stress distribution 

under loads (Chang and Ma 1991, 1992). 

Neglecting the particle rotation gradient, the particles within a group of particles spin 

with the same magnitude. In this situation, the granular medium does not transmit moment 

thus is no longer a micro-polar medium. However, since the particle spin is still in presence, 

the granular medium is of a quasi-micropolar type. Chang and Misra (1989) and Chang 

(1993) have derived this class of constitutive models for granular materials. 

With further neglect of the particle spin from class 5, the particle rotation is identical to 

the rigid body rotation. Constitutive law for granular medium thus derived resembles that of 

classic continua in solid mechanics.  Constitutive models of this class for granular material 

can be found'in the work by Bathurst and Rothenberg (1988), Chang (1988), Jenkins (1988), 

Walton (1987), etc.. 

Most work in the literature on micro-macro properties of granular material treat granular 

material as first gradient continua in the classes 4-6.  Due to the difficulties of dealing with the 

high-rank tensors, very little attention has been paid to the representation of granular material 

as high gradient continua in the classes 1-3.  To illustrate the relationship between micro- 

macro properties such as internal length of granular material and inter-particle stiffness, we 

discuss the constitutive constants of a high-gradient model for isotropic granular materials. 

3.4 CONSTITUTIVE RELATIONSHIP FOR AN ASSEMBLY 

For a representative volume of the granular material, the medium can be treated as 

statistically homogeneous and can thus be regarded as centrical symmetry.  Under this 

situation, the effect of the first gradient of strain and rotation can be neglected and the 

constitutive equation for the granular assembly is in the following form 

ay~Aguzii^ByUMntkt,im+ElplMtPyiJl,MH ^   '   ' 
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This type of high-gradient constitutive law for granular material is in the same class of 

constitutive law proposed by Toupin and Gazis (1964), Mindlin (1965), Coleman and 

Hodgdon (1985), etc. 

Consider an idealized granular material which is made of equal-size spheres with an 

isotropic packing structure; The material has identical inter-particle stiffness for all contacts 

which is independent of contact force. The expression of constitutive relation is given by 

(Chang and Gao 1995a) 

^fiV«+2^y (34) 

In this equation,     X   and    \i   are the Lame constants which relate to the inter-particle 

stiffness by 

*     * (3.5) 
\i=2a(2KK+3KJ 

Mr2 

where    « = -^-r-    represents the density of packing structure. M is the total number of inter- 

particle contacts in the representative volume V, and r is the radius of particles. The other two 

constants corresponding to the high-gradient terms are as follows: 

(3.6) 

3.4.1 Micro-macro Properties 

Compare the derived stress-strain law with generalized Hooke's law, the constants   X 

and    n   are the usual Lame constants.  The corresponding Young's modulus and Poisson's 

ratio are derived as: 

This equation provides a method for estimating elastic moduli based on the values of inter- 

particle stiffness. Eq. 3.5 can also be rearranged, given by 
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E_4Mr2 

" 31/ 

2/C„+3K. 
4K+K (3.7) 

V    K--« 
4Kn+Ks 

(3.8) 

which provides a means for estimating inter-particle stiffness based on the measured value of 

elastic moduli. 

The values of high gradient constitutive coefficients   Cj   and   Cz   are expressed in 

terms of contact stiffness as given in Eq. 3.6. Substituting Eq. 3.8 into Eq. 3.6, the values of 

Cf  and  C2 can be expressed in terms of Lame constants as follows: 

(3.9) 

C2=V(n^M;   orC^iT^Jv 
2   7H   (        10M  J 35P   U-2V 

Eq. 3.9 provides a useful method for estimating the high gradient constitutive constants, 

Ct,C2  , directly from the Lame constants and particle size.  This relationship is of practical 

use since the high gradient constitutive coefficients are difficult to be evaluated from 

laboratory test. 

3.4.2   Role of Internal Length and Inter-particle Stiffness 

The high-gradient constitutive constants,   C1(C2   are functions of internal length r of 

the granular assembly which represents the particle size. When the particle size of a 

granular material is very small compared with the representative volume of the material, the 

effect of strain gradient in the constitutive equation can be neglected.  Thus, the constitutive 

equation reduces to the generalized Hooke's law for granular materials.  On the other hand, 

the effect of strain gradient becomes pronounced as the particle size increases. 
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Inter-particle stiffness have significant effect on the second-gradient constitutive 

coefficients.  Three cases are noted: 

(1) KjKn   is less than 1:  This corresponds to particles with smooth surface.  Such a 

ratio of inter-particle stiffness leads to a positive Poisson's ratio and thus a positive. X   and 

a positive   C,   . As the ratio of    KjK„   decreases (i.e., smoother surface), values of   C, 

and   X   increase while value of   C2   decreases.  The limiting value physically possible for 

KjKn   is zero.  Corresponding to this limiting condition, it is noted that, under the present 

formulations for granular assemblies with spherical particles, the predicted Poisson's ratio can 

not be greater than 0.25 and the Lame constant   X    can not be greater than    n   . 

(2) KjKt   is equal to 1: This corresponds to particles with rough surface.  Such a 

ratio of inter-pärticle stiffness leads to a zero Poisson's ratio and thus a zero   X    and a zero 

CA   .   Under this condition,    C2   is a positive number. 

(3) KJKK   is greater than 1:  This corresponds to particles with very rough surface, 

which is an unusual situation. Such a ratio of inter-particle stiffness leads to a negative 

Poisson's ratio and thus a negative   X    and a negative   Cj   . 

3.5 COMPARISON WITH OTHER MODELS 

A convenient simple form based on the second-gradient theory can be arrived by 

neglecting the effects of volume strain gradient   e^   in Eq. 3.4, and by assuming the 

condition of KS=Q. 
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The simplified version of Eq. 3.4 takes the following form of constitutive equation 

o^O^XU^^n^) (3-10) 

where c is a positive constants, c=—r2. 

It is noted that the simplified model of second- gradient theory (with Kt= 0) given in Eq. 

3.10 is similar to the form given by Bazant and Pijaudier-Cabot (1989) based on nonlocal 

continuum theory, and the linear model of Mindlin's second-gradient theory (Mindlin, 1965, 

Beran and McCoy, 1970b). 

Comparison between nonlocal model and high-gradient model for composite media can 

be found in the work by Beran and McCoy (1970a, b) and Levin (1971).   Here we discuss the 

relations between nonlocal theory and the present high-gradient model for granular material. 

Based on Taylor's expansion (Eq. 3.2), the high gradients of displacement at the local point 

'n' contribute to the displacement at another local point 'm' in the neighbouring distance. 

Therefore, second-order gradient terms in the present model reflect the effect of neighbouring 

medium on a local point.   It is thus expected the high-gradient model is equivalent to the 

nonlocal model under certain conditions. 

In the Eringen-Kroener model of nonlocal elasticity, the constitutive equation is 

osW=fr*(\x-x)){XSyzH(x)+2^(x))dv(x) <3-n> 

where «(IJC-JC'I) is the non-local function (see Kroener, 1967; Eringen and Edelen, 1972; 

Eringen, 1973).  Expand the strain in the integrand at point x, i.e. 

e^ = e{,W+^-^^+X^/-^^+... (3-12) 

and substitute the series of the strain in Eq. 3.12 into Eq. 3.11 of nonlocal model.  After 

neglecting higher terms, we obtain the first-order approximation of nonlocal model, given by 

00 = (14-cv*) (X 6tf ctt+2 ji ty) 
(3.13) 

in which the integrand of Eq. 3.13 and the resultant c is positive.  The value of ^.depends on 
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the nonlocal function.  Note that the first-order approximation of nonlocal model given in Eq. 

3.13 is same as the simplified form of the present high-gradient model in Eq. 3.10, and the 

constant in Eq. 3.13, c = —rz. 

3.6 SUMMARY 

In this chapter, classes of equivalent continua for granular materials are described. As 

expected, during the transformation from a complicated discrete system to a simpler 

continuum system, certain information are lost. Therefore, the constitutive relations for the 

equivalent continuum can not respond, on the macro scale, all deformation features just as 

the original granular material does. How simple the equivalent continuum should be depends 

on how much "essential behavior" of the granular materials are of interest. Unfortunately, the 

limitations of modelling capability are inherited from the type of continuum. Therefore the 

required modelling capability for problems encountered determines what type of equivalent 

continuum to be selected for analysis. For example, the continuum of micropolar type is 

useful to the study of moment transmitting in granular media while the high-gradient continua 

is useful to the study of particle size effect on wave dispersion. 
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CHAPTER 4 

Wave Propagation in Granular Material 

Using High Gradient Theory 

Treating granular materials as a high gradient continue media, the propagation of wave 

in granular materials are analyzed. The constitutive coefficients of the high gradient continue 

are expressed in explicit functions of inter-particle stiffness. In contrast to the classical 

continue, the high gradient terms represent the internal characteristic length of granular 

materials. With the high gradient model, we solve the wave propagation in a finite strip of 

granular material using the method of separated variables, in which the orthogonal 

eigenfunctions can be obtained from the boundary conditions. The short waves with lengths 

less than about two times of the particle diameter can not propagate through the granular 

material because of the discrete nature of the granular material. The solution derived from the 

high gradient theory consists of a series of harmonic waves which are admissible of 

propagation in the granular material. The present numerical results show that due to the 

nonlinear dispersion of wave in granular medium, the peak value of the stress wave will be 

decay as wave propagating. A series smaller stress waves including extension and 

compression waves will be emerge after the main stress wave goes through, which is caused 

by the reflection of the stress wave on boundary of inter-particles.  The predicted phenomena 

are qualitatively in agreement with the simulation results from discrete element methods and 

with the experimental observations from a chain of photo-elastic disks subjected to a impact 

load. 

4.1 INTRODUCTION 

Dynamic response of granular material, such as soil, ceramic and powder material, has 

been of interest to the field of civil engineering, material processing and geophysics. This 

chapter is aimed to study wave propagation in granular material treated as a high gradient 

media. 

The high gradient elastic stress-strain model used in this chapter was developed from a 

micromechanics approach, in which the constitutive coefficients are expressed as explicit 

functions of inter-particle stiffness and particle size (C.S. Chang and J. Gao, 1995a,b). In this 

chapter, the high gradient model is applied to analyze the wave propagation in a finite strip 

fixed at one end and subjected to dynamical traction at the other. The solution carT-be 
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obtained from the solutions of a series of harmonic waves using the method of separation of 

variables. The solution proves that the short waves with lengths less than about two times of 

the particle diameter can not propagate through because of the discrete nature of the granular 

material. The solution also shows a decay of the peak of stress wave as the propagation of the 

wave. This phenomenon is similar to the decay of pöak contact force observed from 

experiments by A Shukla and C. Damania(1988) and from Discrete Element Analysis by C. 

Thornton and Randall, C.W.(1988),  Sadd etc(1992), J.S. Lee etc(1992), for a chain of disks. 

This chapter discuss the decay of the peak stress influenced by the size of particles. 

In this microstructural continuum model, the stress wave excited by dynamic impact 

consists of both compression and extension waves propagating along the granular material. 

This is different from a simple compression wave in classic solution of elastic material. The 

phenomenon of tension reflection is similar to that from Discrete Element analysis (J.S.Lee etc. 

1992). The solution shows that this high gradient continuum model captures important salient 

features of granular material. 

4.2 WAVE PROPAGATION IN A FINITE STRIP OF GRANULAR MATERIALS 

Granular material can be treated as a collection of particles. The geometric deformation 

in discrete system are described by the translations   «/*   and rotations   co"   (n=1,2,...). To 

develop a continuum mechanics model for the behavior of particle assembly, it is desirable to 

view the discrete system as an equivalent continuum system. To this end, we define the 

macro-scale continuum geometric deformation fields as: displacement   ut{x)    and rotation 

<£>t{x)   . When   x   is located at the centroid of n-th particle, the continuum geometric fields 

are compatible with that of the discrete system, i.e.    «i(x")=«i"   and    oi(x*)=w'}  .Therefore 

the inter-particle displacement   Ö™   and inter-particle rotation    of"   can be expressed as a 

series of high gradients of the particle deformations. From the kinematic hypothesis, the 

constitutive law of granular material with random packing structure can be expressed as 

follows (C.S. Chang and J. Gao 1995b): 

where the constitutive constants are dependent of inter-particle properties and the size of 

particles, given by 
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X =4*(KK - *y, » =2a{2KH +3£,) 

C^afa-K}, C2=2ac(Kn+fo 

r2      _    8. ,2 

in which M is the total number of inter-particle contacts in the representative volume V; r is the 

radius of particles; and  [Ä"B, Kt, G„, GJ   are the distortion and rotation contact stiffness 

constants along normal and tangential directions respectively. 

We now consider the case of wave propagation in a finite strip of granular material. In 

this case, only the displacement   u(x,t)   and stress   O(X,J)   in x-direction are considered. 

The constitutive equation of stress   a(pc,fj    in the aforementioned high gradient model is given 

by 

oM =(A+n)[^^ +c J^M] (4.2) 
dx &x 

Ci+2C2_2r25Kn+2Kt 

A + 2n     7   3Ka*-2Ks 

With the high gradient model, the one dimensional wave equation becomes 

p§=|L = (U2,)(1+c4)^ (43) 
a2   ax ax2 ax2 

where    p    is the material mass density. 

It is noted that the wave equation is a fourth-order differential equation. When the 

influence of the internal length on material behavior is neglected, i.e. c=0, the wave equation 

in Eq. 4.3 reduces to the classical form in elastic-dynamics. The wave-propagation in the 

finite strip requires four boundary conditions and two initial conditions. Two of the boundary 

conditions are given by 

«(0,0=0;      e(LIf)=-^M = -Ä_;      i>0 (4.4) 
dx       A+2|i 

The two extra boundary conditions, by use of variational principle, should be 

ft4M,Q.    JfafcOl-O (4.5) 
dx2     '     ax2 

or 

dx2      '     at3 
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The initial conditions are 

K(*,0)=KOM; ^U = v0(r);       0<x<L (4.6) 
at 

In the following, two types of excitation are discussed, namely, initial disturbance and 

dynamic traction. 

4.3 WAVE PROPAGATION SUBJECT TO INITIAL DISTURBANCES 

First, we consider that the wave in the finite strip  is excited by the initial disturbance 

which described by the initial conditions Eq. 4.6 with the homogeneous boundary conditions. 

To obtain the solution by the method of eigenfunction expansion, we further propose 

the solution to be in the form   u(pc,t)=7{t) J(r)  . Substituting the assumed  solution into Eq. 4.3 

and separating the variables, we can express the wave equation as two ordinary differential 

equations, given by 

(4.7) 

with the boundary conditions 

X(0)=0,  x"(0) = 0;      X'(L)=0, X/"(L)=0 (48) 

Clearly, the function   exp(i(ol)   is a solution of Eq. 4.7 which corresponds to the 

harmonic wave propagating in material. The constant   o>    is the natural frequency of the 

system. The solution of equation (4.7b) leads to a series of eigenvalues   <■)„   (« = 1,2,3,...)  . A 

particular mode of the oscillation is termed the eigenfunction XH(jc)   associated with the 

„2 
natural frequency    «„  . The eigenvalues    ß =—   satisfy the following theorems: 

2 
o 

Theorem 1. All eigenvalues   P„=—=■   of Eq. 4.7 are real when the natural boundary 

conditions are satisfied. 

Theorem 2. The eigenfunctions associated with real   pw   constitute an orthogonal set. 
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It is noted that the solution of Eq.  4.7b is dependent on the constitutive parameter of 

high gradient term. 

(a) When   4cß > 1   , the solution can be expressed as follows 

X(x) =ex.p(-Kix)\A cos{Ksx) + B $\n[K2x) ] +exp(K,x) [Ccos{K2x) + D sin(Ji^x)]      (4.9) 

where   K* =, ish|;^ icosi 

To satisfy the boundary conditions given by Eq. 4.8, we substitute Eq. 4.9 into Eq. 4.8 

leading to a set of linear algebra equations with the coefficients A,B,C and D. It can be seen 

that non-trivial solution of A, B, C and D can be obtained if and only if the parameter matrix is 

zero. Since the parameter matrix of the linear equations is not equal to zero, i.e. 

2KxK^*E^O^{K^ cÄ2(ÄlL)4sin2(^t)sÄ2(Ä'1I,))i«0 (41°) 

Therefore, the constants A = B = C = D = 0. 

(b) When    4cp <; 1   , the solution of eigenfunction can be expressed as the following 

form 

X(x) =A cos{—{üfT4c$) + B sin(—/T+Tr^cf) 
^  VS (4,1) 

f c cos(—/TVT-4cß)+ o $\n(-£-{\^/T^c$) 

From the boundary conditions, we can again obtain the linear algebra equation of the 

constants A, B,C and D. At   JC=0  , the linear algebra equations gives   A=C=Q  .Applying 

the boundary conditions on another end of the strip, it can be seen that non-trivial solution of B 

and D can be obtained if and only if the parameter matrix is zero, i.e. 

COS(—fi+Jttft =0 (4.12) 
V2c 

or 

cos(—^i-v/rap)=o 
V2c 

In fact, the two cases lead to the same conclusion which gives 
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fä 2 
(4.13) 

From Eq. 4.11 we can obtain the eigenvalues    p^   given by 

<«4)2*" 
ß*=—^—(1 -jfr*jf*?K        («=1,2,.-..) 

(4.14) 

Because the restriction condition 0<4cßÄ< 1 , the eigenvalues can only be a finite 

series instead of an infinite series. The number of terms of the series is determined from the 

relation . 

JV = max integer i L   i\ 
{fa 2

J 

A finite series of proper orthogonal eigenfunctions exist in the high gradient theory, 

given by 

(4.15) 

X«M-(!)2sln[(i, 4.1)^*1; ii = 0,1 A-,*- (4.16) 

From the above discussion, the waves smaller than certain wavelength can not exist in 

the high gradient medium due to the effect of internal length. The same conclusion was 

derived from the dispersion relation of granular media (Chang and Gao 1995b). 

The max'imum wave number and the minimum wavelength can be obtained from the 

restriction of non-negative eigenvalues. From Eq. 4.12, we obtain the maximum wave number 

or the minimum wavelength 

1«"^^ (4.17) 

vmln ' 
2n 

*rnex 

■2nJc = CQr (4.18) 

where   CQ = 3.35 is a constant. 

For the limiting case of   £,=0  , the minimum wavelength is 3.45r, approximately two 

times of particle diameter, below which the waves can not propagate in the finite strip. 

From the wave numbers obtained, we can deduce the natural frequencies given by 

(«4)« 
«--»VPÜ- V—JT\1 "l^ "2;        "=1,2 Nm 

Corresponding to natural frequencies, the solution of Eq. 4.7a can be in the. form 

(4.19) 
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TK=anCO$(ant)+bK$\n{<i>Kft n=0,1,2 N. (4.20) 

Thus the solution of the wave propagation in the finite strip with a fixed end and free 

end is expressed as follows 

KM=Ekcos(<v) ^„sin(<v))sin[f (»4^ (421) 
0 he. 

where coefficients   an, bn   are to be determined from the initial conditions, given by 

a« = |/fl%Wsin[7(«4^^ «=0,1,2,...^. 
L L     Z (4.22) 

4.4 WAVE PROPAGATION SUBJECT TO DYNAMIC TRACTION 

In this section, we will consider wave propagation in the finite strip excited by the 

dynamic traction given by the boundary conditions Eqs. 4.4 and 4.5, with zero initial 

conditions. In this case, we propose the solution to be in the form 

u^YbA^mm (423) 
0 

where   XnQc);   (n=0,1,...,iV)   are the eigenfunctions given by Eq. 4.16; and 

Y{x,f), RJ(fi',   (n=0,1,...,iV)   are the unknown functions. 

Substituting Eq. 4.23 into the wave equation (4.3) leads to the following two differential 

equations: 

£ (*<,)+co^p^-s^ 
^ (4.24) 

a*4       a*2 

Next, multiplying both sides of Eq. 4.24a by   *,(*)  , integrating over [0,L], and from 

the orthogonal property of eigenfunctions, we have 

Rjto*w*MRj& = *,(*) (425) 

where 
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For zero initial conditions, we obtain the solution of Eq. 4.25, given by 

RJ® = *,(0 - u»/0\<*)sinK(/-T))<fr (4.26) 

It is noted from Eq. 4.25b that we can approximately express the function 

0 

Substituting Eq.4.26 into Eq. 4.23 leads to the following form of the solution 

«M = -£ <^<*)/\<*) sinfo^-i))^ (4.27) 

In addition, the unknown function   H&l)   is determined from the static equation 

(4.24b). Its solution is 

Yfr,t) = a(t) + b(t)x + c(f)sin(-^-) 4 d(t) COS{—) (4.28) 

From the boundary conditions (4a),(5a) and (6b), we obtain that a=c=:d=0. And then, 

from Eq. 4.4b, the solution of Eq. 4.24 becomes 

Yfrä-JS®- (4.29) 
X +2|i 

Substituting Eq. 4.29 into Eq. 4.25b, we obtain 

2 

And then, substituting Eq. 4.30 into Eq. 4.27 leads to the final solution of wave propagation 

subject to dynamic traction, given by 

Ufrt) = §L_^ f M}^sjn£(/i4)i0 f W)sinK(*-0)dT (4 31) 
(X +2U)T? V (2n+1)2     V    2' W * 

For a specific time-dependent traction   p$    given by 

p{t) = P0; 0<t<tn 0 ^ (4.32) 
= 0; V? 
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The solution can be obtained by substituting Eq. 4.32 into Eq. 4.31, thus 

(k +2n)jr o   (2n+1)2      L     2 

And then, the stress field is derived from the constitutive equation (4.2), given by 

where 

/(*)=-1[1-CGS(<V)1: (Xr«o 

= sin(wK!)sin{«,,<*--!)); tft 

4.5 SUMMARY 

From Eq. 4.18, the admissible minimum wave length is proportional to the particle size. 

The number of terms of the harmonic waves propagating in granular materials is inversely 

proportional to .the particle size. When the diameter of particles is very small compared to the , 

the effects of high gradient terms in the constitutive equation are negligible, and the solution of 

wave propagation is degenerated into classical solution. 

In classical solution, all harmonic waves have the same wave velocity. In high gradient 

theory, each of harmonic wave has a different velocity. Since the excited wave due to dynamic 

traction is a summation of harmonic waves, the shape of the excited wave keeps constant 

during propagating in the classical theory. However, in high gradient theory, the shape of the 

excited wave changes due to dispersion. 

Eq. 4.34 is used for analysing the stress wave propagating along the strip. A typical 

sequence of the stress wave propagation in the finite strip subjected to dynamic traction is 

shown in Fig. 4.1 using dimensionless variables. 

Although the stress wave excited at the beginning of dynamic impact is only a simple 

compression wave, at later stage, the stress waves include both compression waves and 

extension waves. The phenomena is caused by the dispersion of stress waves due to the 

discrete nature of granular material. 

The normalized peak of stress wave decay with time. The rate of decay decrease with 

time. The influence of particle size on the decay stress wave during propagation is shown in 

Fig. 4.2. When the particle diameter increase, the phenomenon of decay is a significant factor 

in the analysis of wave propagation in granular media. 
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CHAPTER5 

NORMAL AND TANGENTIAL COMPLIANCE FOR 

ELASTIC CONFORMING RINDER CONTACT. 

This chapter describes the normal and tangential conforming contact compliance for a 

system of two elastic particles bonded by a layer of elastic binder in between. The governing 

equation of this problem is a second kind of Fredlholm integral equation with singularities of 

logarithmic type. Exact solution for the unknown interfacial pressure between particle and 

binder is difficult to arrive. Derivations of compliance are presented in the forms of the upper 

and lower bounds, and of the best estimate based on physical approximations. It shows that 

the derived elastic compliances agree favorably with those of "discretized exact solutions" 

obtained from numerical methods. 

5.1 INTRODUCTION 

The subject of layer/binder contact frequently occurs in granular/particulate materials 

such as asphaltic concrete or cemented sand. This subject is also important in tribology, 

involving the mechanical behavior of coated materials. Many topics in this area have been 

investigated in the past years. For example, Muki (1960) studied the problem of contact 

between a layer and an elastic half space. Goodman and Keer (1975) studied a case of 

surface layers bounded to a substrate. Bentall and Johnson (1968) worked on a plane strain 

layered problem which was further studied by Meijers (1968) and Alblas and Kuipers (1970) 

for both conditions of thin and thick layers. Matthewson (1981) presented a theory of 

indentation of a soft thin coating by a rigid body. Keer et al. (1991) investigated the 

compliance of coated elastic bodies in contact. Dvorkin et al. (1991) employed numerical 

solutions to examine the normal interaction of two elastic spheres separated by an elastic 

cementation layer and recently (1994) extended the numerical solutions to examine tangential 

deformation of two cemented spheres.  In addition, many related topics can be found in the 

books by Johnson (1985) and by Gladwell (1980). 

This study is focused on the compliance of a system of two elastic particles bonded 

together by a thin layer of binder. We aim to derive closed-form relationships between the 

forces and the relative particle/binder movements in this system. Closed-form expressions are 

of particular interest because they can be readily incorporated into discrete element methods 

for the analysis of a large assembly of particles. 

Progression of the chapter begins with establishing integral equations that govern the 

interfacial contact pressure distribution between particle and binder. Analyses of the upper _ 

and lower bounds with respect to the compliance of the two particle system are followed.  The 
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best estimate of compliance based on physical approximation is then pursued. The closed- 

form analytical expressions are compared with the numerical solutions obtained directly from 

solving the governing integral equations by a discretization technique. 

5.2 FORMULATION OF THE PROBLEM 

Fig. 5.1 shows an axi-symmetric configuration of two particles bonded by a binder in a 

cylindrical coordinate. The function z = h(r) represents the geometry of interfacial boundary 

between the particles and the binder, given by 

A(r)=Ao (      r
2^ Ud— 

[     a*. 
(5.1) 

d=-2— (5-2) 

where a is the radius of contact area, h0 is the thickness of the binder at r = 0, and d is the 

dimensionless shape parameter related to the curvature of particle surface, which is limited in 

a range 0 <d < 1.  For a planer surface, d is zero.  For a spherical particle, d is given by 

li 
2/fy 

where R is the radius of the spherical particles. 

We denote the constraint modulus E, and E2, Poisson's ratio u, and Ug for the particles 

and the binder respectively, where the constraint modulus E, and E2 are defined as 

1-2v. 

and Gi and G2 are the shear modulus of the particles and the binder respectively. 

We intend to derive the normal and tangential compliance of this two particle system 

with an elastic binder. The governing equations that relate force and relative movement of two 

particles are discussed separately for the normal mode and the tangential mode. 

5.2.1 Normal Compliance 

The relative normal approach 8Z for the two contact bodies is separated into two 

components: the normal displacement at the binder-particle interface relative to the particle's 

centroid, w,(r); and the normal displacement at the binder-particle interface (i.e., at z=h(r)) 

relative to the z=0 plane, w2(r), given by 

5, = Wl(r) + wz{r) (5.4) 

Since z = 0 is a plane of symmetry, the binder normal displacement vanishes at z=0. As the 

binder is a thin layer, we approximate the normal strain to be uniform in the z direction across 

the binder.  Thus the normal displacement w2(r) contributed from binder can be expressed 'as 
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follows: 

W2(r)=Ä(r)£fei (5.5) 
E2 

where p(r) is the interfaciai normal pressure between the particles and the binder. 

In the analysis of the normal displacement w^r), we assume that the characteristic 

dimension of the particle is much larger than that of the particle-binder contact area.' Thus it is 

justifiable to pursue the analysis of w,(r) based on a half-space premise.  Following the well- 

known Boussinesq's equation, w,(r) can be related to p(r) by: 

Wl(r) = A ~V1) r r2n     f(p) p d p de 
«B,     Jo  Jo    p~+ p2 _ 2r p COS 6 

(5.6) 

Substituting Eqs. 5.5 and 5.6 into Eq. 5.4, we have 

a 
5   - AMifr) + 

(1 " Vi)  fa iKp) P ifr.r) dp (57) 
z E_ -irK.       JO rö— 9 £, WA,        «"> ^2  + p2 

where l(p, r) are defined as 

I(p,r)=m - /f dQ ;    * = -^ (5.8) 

Integration of the interfaciai pressure function, p(r), over the contact area gives the 

resultant normal contact force P2 

Pz = 2% ja p(r)r dr (5-9) 

Eqs. 5.7 and 5.9 indirectly provide the compliance relationship between the relative normal 

approach 5Z and the contact force Pz through the interfaciai pressure function. 

5.2.2 Tangential Compliance 

The relative tangential approach in the x-direction 6^ for the two contact bodies is also 

separated into two components: the tangential displacement at the binder-particle interface 

relative to the particle's centroid, u,(r, 0); and the tangential displacement at the binder- 

particle interface (i.e., at z = h(r)) relative to the z = 0 plane, u2(r, 6), given by 

5, = «,(rfe) + «2(r,6) (5.10) 

The tangential displacement vanishes at the plane of symmetry z = 0.  Considering 

that the binder is a thin layer, we approximate the tangential strain to be uniform in the z 

direction across the binder, and the following relation can then be derived: 

K2(rl6)=A(r)5M (5.11) 
G2 

where G2 is the shear modulus of binder, q(r, 0) is the interfaciai tangential pressure between 
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the particles and the binder. 

~ Since the characteristic dimension for the particle is much larger than that of the 

contact area, we use the known relationship between u,(r, 6) and q(r, 6) based on the half- 

space premise (Johnson 1985). Thus the tangential displacement 8* for the two contact 

bodies is now equal to the summation of u,(r, 0) and u,(r, 0) with an error of the order (u^2 

(Dvorkin et al., 1994) 

5* " Hr)3^- + 2~- J* J*\M) F(rlp,e>4),v1)p#rfp (5.12) 

where 

F(r,p,8,4>,vi) = <— + v, ■* -* ^ } (5 13) 

I2 = (rcose - p cos<}>)2+(rsinö - p sin<J))2 

where, G1 and u, are respectively the shear modulus and Poisson's ratio of the particle. 

Integration of the interfacial pressure function, q(r, 0), over the contact area gives the resultant 

tangential contact force Px 

'0   JO 

Again the governing equations (12) and (14) provide the compliance relationship between the 

relative tangential approach 6^ and the contact force Px through the unknown interfacial 

pressure function, q(r,  0). 

In fact, the interfacial pressure functions, q(r, 0) or p(r), can be determined by 

simultaneously solving Eqs. 5.12 and 5.14 or Eqs. 5.7 and 5.9. Unfortunately, the governing 

equations (7) and (12) are the second kind of Fredholm integral equations with kernels which 

have logarithmic singularities. To this type of integral equations, analytical solutions are difficult 

to arrive. However, with special care on the singularities, they can be solved using a numerical 

discretization technique.  Details can be found in Zhu et al (1995). 

5.3 SOLUTIONS FOR TWO EXTREME CASES 

The analytical solutions of the interfacial pressures p(r) in Eq. 5.7 and q(r, 0 ) in Eq. 

5.12 are known for two extreme cases, namely, (1) rigid particle case (i.e., E, —»ooand G, —>oo 

while E2 and G2 are finite), and (2) rigid binder case (i.e., E, and G2 are finite while E2 —>coand 

G, —>oo).  The compliance relationship under these two extreme conditions are described in 

this section. 

Px = [a fZ*q(r#)r dQ dr (514) 
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Rigid_Particle_Case_ 

In the rigid particle case, the relative movement of the two contact bodies is 

contributed only from the deformation of binder. Thus 

5  = k(r) £& (5.15) 
E2 

Sx = h{r)<Ml (5.16) 
G2 

Subsequently, for the rigid particle case, the corresponding normal interfacial pressure 

denoted as p,(r) is given by 

pJr) = A._A_ (5.17) 

and the interfacial tangential pressure q(r, 0) becomes independent of the variable B 

(denoted as q^r)) and reads 

q(r) =     PxH° (5-18) 

where 

X =  ln<1 +$ (5.19) 
d 

and d is the shape parameter defined in Eq. 5.1. 

Thus the normal and tangential compliance relationships between the contact force P2 

and the relative approach 8Z become 

K = ClA   J       C1z = —|- (5.20) 

»,-CtA :    c^=-^rz (521) 

Rigid Binder Case 

In the rigid binder case, which represents the well known rigid punch problem, the 

normal interfacial pressure,  denoted as p2(r), is given by 

p
aM=A(«a-'V (522) 

and the tangential pressure, q(r, 0) is again dependent only on r (denoted as q2(r)): 

*H -p- <«2 - 'V (5 23) 
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For this case, the normal and tangential compliances are: 

8<=<y<: c*43r <524) 

», = <y, ;   c&=f^ (525) 

It can be easily verified that under both extreme conditions, r p^r), r p2(r), r q^r), and 

rq2(r),  are monotonically decreasing functions in the range of 0 < r < a. Indeed, the functions 

r p(r) and r q(r) are monotonic for any pairs of E, , E2 and G^ , G2 as verified from the 

numerical method given in Appendix-A. 

5.4 UPPER BOUND SOLUTION 

Explicit compliance relationships are easily derived for the two extreme conditions. 

However, for general conditions, analytical solutions to Eq. 5.7 and Eq. 5.12 are difficult to 

obtain.  The upper and lower bounds, and the best estimated solution based on the physical 

approximations have been derived by Zhu et. al (1995). A brief summary is given in this 

section. 

The governing equations are first transformed to be suitable for the use of 

Chebyshev's inequality for integral. Using the principles of Chebyshev's inequality for integral, 

the equations can be greatly simplified thus leading to the upper bound solution for the 

normal compliance 

«, * «v*,<yp, (526) 

where 

& = 2M (5.27) 

H($ =5.699-2.404tf+1 .495tf2-1.079d3+0.841 tf4-0.689^-       (5-28) 
i+d 

and the upper bound solution for the tangential compliance: 

», * (Cu - QJT-F» (5 29) 
•2-v, 

where, b-, is defined in Eq. 5.27. 
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5.5 LOWER BOUND SOLUTION 

Similarly, application of the Chebyshev's inequality for integral results in the lower 

bound solution for the normal compliance: 

a* * 0feCi,+cy*, (5.30) 

where 

b2=-(\+Q.5d)X< 1 (5.31) 
4 

and the lower bound solution for the tangential compliance: 

8, * (hC^C^P, (5.32) 

Based on the upper and lower bound solutions, the true normal compliance must be 

between (C1z + b, C2z) and (b2 C1z + C2z), and the true tangential compliance must be between 

(C1x + bi C^) and (b2 C1x + C^). Examining the range of values of b^ and b2, for versus the 

shape parameters, the maximum relative difference between the upper and lower bounds of 

compliance is from 18-20 %. 

5.6 BEST ESTIMATE BASED ON PHYSICAL APPROXIMATIONS 

Based' on physical approximation, it leads to the following best estimate for normal 

and tangential compliance relationship: 

v«vcy^ <5-33> 
0,-CCVtyP, (5-34) 

Eqs. 5.33 and 5.34 satisfy the two extreme cases: (1), rigid particle case (Et —»ooand E2 finite); 

and (2), rigid binder case (E, finite and E2 —>oo). In addition, the best estimated compliances 

fall in between the upper and lower bounds, i.e., the following inequalities are always satisfied: 

b2C, +C2 < q +Ca< q +^C2 (5 35) 

WC* < C^C* < Cu+^C* (5-36) 
£ v1 

Eqs. 5.33 and 5.34 indicate that the overall compliance corresponds to a serial 

connection of the two compliances C, and C2 , where C, represents the compliance of particle 

and C2 represents the compliance of binder. The best estimated analytical compliances are in 

good agreement with the compliances numerically calculated (Zhu et al 1995). 
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5.7 SUMMARY 

For the compliance of an elastic particle-binder system, the governing equation is a 

second kind of Fredholm integral equation with singularities of logarithmic type. Exact solution 

is difficult to arrive. Even solved numerically, special care needs to be taken for the 

convergency problems associated with the singularities. This approach makes a use of the 

principles of Chebyshev's inequality for integral which allows simplifications of the governing 

equations thus yields remarkably simple closed-form expressions for the upper and lower 

bound solutions of compliances. The best estimates of compliances have been found to be 

favorably in agreement with the numerical solutions and thus can be considered as a good 

approximate solution for this type of problem. 
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' h(r) 

Figure 5.1  Sketch of the configuration for a binder-particle system 
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CHAPTER 6 

SUMMARY AND CONCLUSION 

This report reviews the results of this project in four different areas: 1) descriptions of 

micro-structure, 2) micro-macro relationship, 3) classes of rnicromechanics constitutive theory, 

and 4) contact law of the inter-particle binder.  These four areas are essential to the 

construction of a rnicromechanics theory for particulate media. 

Chapter two describes several methods of micro-structure characterization and how 

the microstructure description is integrated in the formulation to relate the micro-macro 

mechanical behavior. The discrete variables selected in the rnicromechanics model depend 

greatly on the type of micro-structure descriptor. Thus the micro-structure descriptor is the key 

element in rnicromechanics theory for granular material. The cell model, as oppose to the 

branch model, is found to be useful in describing spacial variation of microstructure (i.e., the 

heterogeneity of material). However, there are still many fundamental issues need to be 

resolved on the mechanics of cell interaction. 

Chapter three addresses the limitation of classic continuum in modelling granular 

media. In order to model some features due to the effect of microstructure and discrete nature 

of granular particles, generalized continua different from the classic continuum are necessary 

to be considered. Several new classes of generalized continua, ranging from simple to 

complex, are derived for representing granular media. Degree of complexity of the continuum 

is proportional to the modelling capability. For example the micro-polar continua is useful in 

modelling the effect of particle rotation. The high gradient model is useful in modelling large 

deformation especially after peak strength of the granular material and in modelling some 

distinct features for dynamic wave propagating through granular media. 

In Chapter four, the high gradient model is used as an example to analyze the wave 

dispersion in granular media, a phenomenon that can not be modelled by the classic 

continua. The results show that waves with different frequencies have different velocities in a '" 

granular medium. Short waves propagate slower. Very short waves can not pass through the 

medium. Subsequently, a relationship is derived for the decay of peak stress wave as a 

function of particle size. This phenomenon is very different from the theory of wave 

propagating in classic continuum. 

Chapter five presents part of the results from the collaborated work with Wright 

laboratory at Tyndall Air Force Base. This chapter describes the normal and tangential 

conforming contact compliance for a system of two elastic particles bonded by a layer of 

elastic binder in between. The principle of Chebyshev's inequality is found to be a useful 

concept for obtaining solutions for the governing equations of Fredlholm type. Continuation of 

the work are undertaken for studying compliance of a binder/particle system in rolling and 

twisting modes. 

65 



REFERENCES 

Alblas, J.B. & Kuipers, M. (1970), "On the Two-dimensional Problem of a Cylindrical Stamp 

Pressed into a Thin Elastic Layer", Ada Mechanics, Vol. 9, 292. 

Bathurst, R. J. and Rothenberg, L. (1988), "Micromechanical Aspects of Isotropie Granular 

Assemblies with Linear Contact Interactions", Journal of Applied Mechanics, ASME, 

Vol. 55, 17-23. 

Bardenhagen, S. and Trianfyllidis, N. (1994)," Derivation of Higher Order Gradient Continuum 

Theories in 2,3-D Non-linear Elasticity from Periodic Lattice Models", Journal of 

Mechanics and Physics of Solids, Vol. 42, 111-139. 

Bazant, Z. P. and Pijaudier-Cabot, G (1987), "Nonlocal Continuum Damage Localization 

Instability and Convergence" Journal of Applied Mechanics, ASME, Vol. 55,  659-673. 

Beesack, P.R. and Pecaric, J.E. (1985). "Integral Inequalities of Chebyshev Type," J. Math. 

Analysis Applications, Vol. 111, 643-659. 

Bentall, R.H. & Johnson, K.L (1968), "An Elastic Strip in Plane Rolling Contact," Int. J. of 

Mechanical Sciences, Vol. 10, 637. 

Beran, M. J. and McCoy, J. J. (1970a), "Mean Field Variations in a Statistical Sample of 

Heterogeneous Linearly Elastic Solids", International Journal of Solids and Structures 

Vol. 6, 1035-1054. 

Beran, M.J. and McCoy, J.J. (1970b), "The Use of Strain Gradient Theory for Analysis of 

Random Media" International Journal of Solids and Structures, Vol. 6,1267-1275 

Cambou, B. (1993), "From Global to Local Variables in Granular Material," Powders and Grains, 

C. Thornton, ed., A. A. Balkema, Rotterdam, The Netherlands, 73-86. 

Chang, C.S. (1988), "Micromechanical Modelling of Constitutive Relations for Granular 

Material", Micromechanics of Granular Materials, Eds. M. Stake, and J.T.Jenkins, 

Elsevier, Amsterdam, The Netherlands, 271-279. 

Chang, C. S. (1993), "Micromechanics Modeling for Deformation and Failure of Granulates with 

Frictional Contacts," Mechanics of Material, Elsevier Science Publishers, Amsterdam, 

Vol. 16, No. 1-2, pp. 13-24. 

Chang, C. S., Misra, A., and Acheampong, K. (1992), "Elastoplastic Deformation of Granulates 

with Frictional Contacts," Journal of Engineering Mechanics, ASCE, Vol. 118, No. 8, 

pp. 1692-1708. 

Chang, C. S., and Gao, J. (1995a), "Second-Gradient Constitutive Theory for Granular Material 

with Random Packing Structure," International Journal of Solids and Structures, Vol. 32 

(in print). 

Chang, C. S. and Gao, J. (1995b), "Non-linear Dispersion of Plane Wave in Granular Media," 

Journal of Non-linear Mechanics,  (in print). 

66 



Chang, C.S. and Liao, C. (1990), "Constitutive Relations for Particulate Medium with the Effect 

of Particle Rotation", International Journal of Solids and Structures, Vol. 26, 437-453. 

Chang, C. S and Ma, L. (1991), "A Micromechanical-based Micro-polar Theory for Deformation 

of Granular Solids", International Journal of Solids and Structures, Vol. 28, 67-86. 

Chang, C.S. and Ma, L. (1992), "Elastic Material Constants for Isotropie Granular Solids with 

Particle Rotation", International Journal of Solids and Structures, Vol.29, 1001-1018. 

Chang, C. S. and Misra, A. (1989), "Theoretical and Experimental Study of Regular Packings of 

Granules," Journal of Engineering Mechanics, ASCE, Vol. 115, No. 4, pp. 704-720. 

Christoffersen, J., Mehrabadi, M.M. and Nemat-Nassar, S. (1981), "A Micromechanical 

Description on Granular Material Behavior", Journal of Applied Mechanics, ASME, 

Vol.48, 339-344. 

Coleman, B.D. and Hodgdon, M.L (1985), "On Shear Bands in Ductile Materials" Arch. Ret. 

Mech. Anal. Vol. 90, 219-247. 

Cosserat, E and F. (1909), "Theorie des Corps Deformables" A Herman et Fils, Paris. 

Deresiewicz, H. (1958), "Stress-Strain Relations for A Simple Model of a Granular Medium", 

Journal of Applied Mechanics, Vol.25, 402-406. 

Dvorkin, J., Mavko, G. and Nur, A. (1991), "The Effect of Cementation on the Elastic Properties 

of Granular Material," Mechanics of Materials, Vol. 12, 207-217. 

Dvorkin, J., and Yin, Hezhu (1994), "Contact Laws for Cemented Grains: Implications for Grain 

and Cement Failure",  Mechanics of Materials, to be appeared. 

Duffy, J. (1959), "A Differential Stress-Strain Relation for the Hexagonal Close Packed Array", 

Journal of Applied Mechanics, ASME, Vol. 26, 88-94. 

Duffy, J. and Mindlin, R. D. (1957), "Stress-Strain Relation and Virbrations of a Granular 

Media", Journal of Applied Mechanics, ASME, Vol. 24, 593-595. 

Eringen, A. E. (1968).  Theory of Micropolar Elasticity.  In Fracture - An Advanced Treatise 

(Edited by H. Liebowitz), Vol.  II, Chapter 7, pp. 621-693. Academic Press, New York. 

Eringen, A. C. and Edelen, D. G. B. (1972), "On Nonlocal Elasticity" International Journal 

Engineering Science, Vol.10,  233-248. 

Eringen, A.C. (1973), "Linear Theory of Nonlocal Microelasticity and Dispersion of Plane 

Waves" Letter of Applied Science, Vol.1, 129-146. 

Gladwell, G.M.L (1980). Contact Problems in the Classical Theory of Elasticity Alphen aan den 

Rijn:  Sijthoff and Noordhoff. 

Goodman, LE. and Keer, L.M. (1975), "Influence of an Elastic Layer on the Tangential 

Compliance of Bodies in Contact", The Mechanics of the Contact Between Deformable 

Bodies (Edited by A.D. de Pater and J.J. Kalker), 127-151, Delft University Press. 

Jenkins, J. T. (1988), "Volume Change in Small Strain Axisymmetric Deformations of a Granular 

Material", Micromechanics of Granular Materials, Eds. M. Satake, and J.T. Jenkins, 

Elsevier, Amsterdam, The Netherlands, 143-152. 

67 



Jenkins, J. T. and Strack, O. D. L. (1993), "Mean Field Stress-strain Relations for Random 

Arrays of Identical Spheres in Triaxial Compression," Advances in Micromechanics of 

Granular Materials, Eds., Shen et. a!., Elsevier, Amsterdam, 41-50. 

Johnson, K.L (1985). Contact Mechanics, Cambridge University Press, Cambridge. 

Keer, L.M., Kim, S.H., Eberhardt, A.W., and Vithoontien, V. (1991). Compliance of Coated 

Elastic Bodies in Contact. Int.J. Solids Structures, Vol. 27, No. 6, 681-698.   .:. 

Kroener, E. (1967), "Elasticity Theory of Materials with Long Range Cohesive Forces" 

International Journal of Solids and Structures. Vol.3, 731-742. 

Koenders, M. A. (1987), "The Incremental Stiffness of an Assembly of Particles," Ada 

Mechanica, Vol. 70, 31-49. 

Lee, J.S., Ma, M.Y., and Huang, A.B. (1992), "Micromechanical Simulation of Wave 

Propagation in Dense Granular Assemblies", Engineering Mechanics (Proceedings of 

Ninth Conference ASCE) Eds. L. D. Lutes and J.M. Niedzwecki, ASCE. New York, 

417-420. 

Koenders, M. A. (1994), "Least Square Methods for the Mechanics of Nonhomogeneous 

Granular Assemblies," Ada Mechanica, Springer- Verlag, Vol. 107. 

Levin, V. M. (1971), "The Relation Between Mathematical Expectations of Stress and Strain 

Tensors in Elastic Microheterogeneous Media," PMM, Vol. 35, No. 4, 744-750. 

Mattewson, M.J. (1981), "Axi-symmetric Contact on Thin Compliant Coatings", J. Mech. Phys. 

Solids,No\. 29, 89. 

Meijers, P. (1968), "The Contact Problem of a Rigid Cylinder on an Elastic Layer", Applied 

Science Research, Vol. 18, 353. 

Mindlin, R. D. and Tiersten, H. F. (1962), "Effects of Couple Stresses in Linear Elasticity", 

Arch.Rat. Mech. Anal. Vol.11, 415-421. 

Mindlin, R. D. (1965), "Second Gradient of Strain and Surface-Tension in Linear Elasticity", 

International Journal of Solids and Structures, Vol.1. 417-438. 

Muki, R. (1960), "Asymmetric Problems of the Theory of Elasticity for a Semi-infinite Solid and a 

Thick Plate", Progress in Solid Mechanics (Edited by I. N. Sneddon and R. Hill), Vol. 1, 

North-Holland, Amsterdam. 

Rothenberg L. and Selvadurai, A. P. S. (1981), "Micromechanical Definition of the Cauchy 

Stress Tensor for Particulate Media", Mechanics of Structured Media (ed. A.P.S. 

Selvadurai), Elsevier, Amsterdam, The Netherlands, pp. 469-486. 

Sadd, M. H, Tai, Q. and Shukla, A.(1992), " Contact Law Effects on Wave  Propagation 

inParticula te Materials Using Distinct Element Modelling", International Journal of 

Nonlinear Mechanics., Vol. 28, 251-265 

Shukla, A., and Sadd, M.H., and Mei, H.(1991), "Experimental and  Computational Modelling of 

Wave Propagation in Granular Materials", Exp. Mech. Vol. 30, 377-381 

68 



Thornton, C. and Randall, C.W.,(1988), "Applications of Theoretical Contact   Mechanics to 

Solid Particle System Simulation", Micromechanics of Granular Materials, Eds. M. 

Stake, and Jenkins, J.T. Elsevier, Amsterdam, The Netherlands, 133-142. 

Toupin, R. A. (1962), "Elastic Materials with Couple-Stresses", Arch. Rat. Mech.Anal., Vol.11 

385-396 

Toupin, R. A. and Gazis, D. C. (1964), "Surface Effects and Initial Stress in Continuum and 

Lattice Models of Elastic Crystals" in Proceedings of the International Conference on 

Lattice Dynamics, Ed by Walli, R. F, Pergamon Press, 594-602 

Triantafyllidis, N. and Aifantis, E. C. (1986), "A Gradient Approach to Localization of 

Deformation l-Hyperelastic Materials", Journal of Elasticity, Vol.16, 225-237 

Truesdell, C. and Toupin, R.A. (1960), "The Classical Field Theories", Encyclopedi of Physics, 

Vol 111/1 Springer-Verlag, Berlin 

Walton, K. (1987), "The Effective Elastic Moduli of a Random Packing of Spheres", Journal of 

Mechanics and Physics of Solids, Vol.35, 213-226. 

Weyl, H. (1944). Classical Groups. Princeton University Press. 

69 


